第41章 人工智能在智能驾驶环境感知中的性能优化研究

论文珍宝阁 五车五 848 字 1个月前

1. 特征级融合

在特征提取阶段进行融合,充分利用不同传感器的互补信息。

2. 决策级融合

对不同传感器的检测结果进行综合决策,提高可靠性。

(四)超参数调整与优化算法

1. 利用自动超参数搜索技术,如随机搜索、基于梯度的搜索等。

2. 选择合适的优化算法,如 Adam、SGD 等,并调整其参数。

四、实验与结果分析

(一)实验设置

1. 数据集选择

介绍使用的公开数据集和自定义数据集。

2. 评估指标

如准确率、召回率、F1 值、平均精度等。

(二)不同优化策略的效果评估

1. 数据增强对模型性能的影响

展示不同数据增强方法在不同场景下的效果。

2. 模型压缩后的性能与计算效率对比

分析压缩前后模型的准确性和计算速度变化。

3. 多传感器融合策略的性能比较

比较不同融合策略在复杂环境中的感知效果。

(三)综合优化策略的实验结果

展示同时应用多种优化策略后的整体性能提升,并进行详细的分析和讨论。